3.153 \(\int (2+3 x^2) \sqrt{3+5 x^2+x^4} \, dx\)

Optimal. Leaf size=279 \[ \frac{\sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) \text{EllipticF}\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right ),\frac{1}{6} \left (5 \sqrt{13}-13\right )\right )}{\sqrt{6 \left (5+\sqrt{13}\right )} \sqrt{x^4+5 x^2+3}}-\frac{23 x \left (2 x^2+\sqrt{13}+5\right )}{15 \sqrt{x^4+5 x^2+3}}+\frac{1}{15} x \left (9 x^2+25\right ) \sqrt{x^4+5 x^2+3}+\frac{23 \sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) E\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{15 \sqrt{x^4+5 x^2+3}} \]

[Out]

(-23*x*(5 + Sqrt[13] + 2*x^2))/(15*Sqrt[3 + 5*x^2 + x^4]) + (x*(25 + 9*x^2)*Sqrt[3 + 5*x^2 + x^4])/15 + (23*Sq
rt[(5 + Sqrt[13])/6]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*Elliptic
E[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/(15*Sqrt[3 + 5*x^2 + x^4]) + (Sqrt[(6 + (5 - Sqrt[1
3])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 +
 5*Sqrt[13])/6])/(Sqrt[6*(5 + Sqrt[13])]*Sqrt[3 + 5*x^2 + x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.122301, antiderivative size = 279, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {1176, 1189, 1099, 1135} \[ -\frac{23 x \left (2 x^2+\sqrt{13}+5\right )}{15 \sqrt{x^4+5 x^2+3}}+\frac{1}{15} x \left (9 x^2+25\right ) \sqrt{x^4+5 x^2+3}+\frac{\sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) F\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{\sqrt{6 \left (5+\sqrt{13}\right )} \sqrt{x^4+5 x^2+3}}+\frac{23 \sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) E\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{15 \sqrt{x^4+5 x^2+3}} \]

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x^2)*Sqrt[3 + 5*x^2 + x^4],x]

[Out]

(-23*x*(5 + Sqrt[13] + 2*x^2))/(15*Sqrt[3 + 5*x^2 + x^4]) + (x*(25 + 9*x^2)*Sqrt[3 + 5*x^2 + x^4])/15 + (23*Sq
rt[(5 + Sqrt[13])/6]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*Elliptic
E[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/(15*Sqrt[3 + 5*x^2 + x^4]) + (Sqrt[(6 + (5 - Sqrt[1
3])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 +
 5*Sqrt[13])/6])/(Sqrt[6*(5 + Sqrt[13])]*Sqrt[3 + 5*x^2 + x^4])

Rule 1176

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(2*b*e*p + c*d*(4*p
+ 3) + c*e*(4*p + 1)*x^2)*(a + b*x^2 + c*x^4)^p)/(c*(4*p + 1)*(4*p + 3)), x] + Dist[(2*p)/(c*(4*p + 1)*(4*p +
3)), Int[Simp[2*a*c*d*(4*p + 3) - a*b*e + (2*a*c*e*(4*p + 1) + b*c*d*(4*p + 3) - b^2*e*(2*p + 1))*x^2, x]*(a +
 b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]

Rule 1189

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1099

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b +
q)*x^2)*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)]
)/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1135

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(x*(b +
q + 2*c*x^2))/(2*c*Sqrt[a + b*x^2 + c*x^4]), x] - Simp[(Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticE[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)])/(2*c*Sqrt[a + b*x^2
 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; Fre
eQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \left (2+3 x^2\right ) \sqrt{3+5 x^2+x^4} \, dx &=\frac{1}{15} x \left (25+9 x^2\right ) \sqrt{3+5 x^2+x^4}+\frac{1}{15} \int \frac{15-46 x^2}{\sqrt{3+5 x^2+x^4}} \, dx\\ &=\frac{1}{15} x \left (25+9 x^2\right ) \sqrt{3+5 x^2+x^4}-\frac{46}{15} \int \frac{x^2}{\sqrt{3+5 x^2+x^4}} \, dx+\int \frac{1}{\sqrt{3+5 x^2+x^4}} \, dx\\ &=-\frac{23 x \left (5+\sqrt{13}+2 x^2\right )}{15 \sqrt{3+5 x^2+x^4}}+\frac{1}{15} x \left (25+9 x^2\right ) \sqrt{3+5 x^2+x^4}+\frac{23 \sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} \sqrt{\frac{6+\left (5-\sqrt{13}\right ) x^2}{6+\left (5+\sqrt{13}\right ) x^2}} \left (6+\left (5+\sqrt{13}\right ) x^2\right ) E\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{15 \sqrt{3+5 x^2+x^4}}+\frac{\sqrt{\frac{6+\left (5-\sqrt{13}\right ) x^2}{6+\left (5+\sqrt{13}\right ) x^2}} \left (6+\left (5+\sqrt{13}\right ) x^2\right ) F\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{\sqrt{6 \left (5+\sqrt{13}\right )} \sqrt{3+5 x^2+x^4}}\\ \end{align*}

Mathematica [C]  time = 0.290848, size = 229, normalized size = 0.82 \[ \frac{i \sqrt{2} \left (23 \sqrt{13}-130\right ) \sqrt{\frac{-2 x^2+\sqrt{13}-5}{\sqrt{13}-5}} \sqrt{2 x^2+\sqrt{13}+5} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{\frac{2}{5+\sqrt{13}}} x\right ),\frac{19}{6}+\frac{5 \sqrt{13}}{6}\right )+2 x \left (9 x^6+70 x^4+152 x^2+75\right )-23 i \sqrt{2} \left (\sqrt{13}-5\right ) \sqrt{\frac{-2 x^2+\sqrt{13}-5}{\sqrt{13}-5}} \sqrt{2 x^2+\sqrt{13}+5} E\left (i \sinh ^{-1}\left (\sqrt{\frac{2}{5+\sqrt{13}}} x\right )|\frac{19}{6}+\frac{5 \sqrt{13}}{6}\right )}{30 \sqrt{x^4+5 x^2+3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(2 + 3*x^2)*Sqrt[3 + 5*x^2 + x^4],x]

[Out]

(2*x*(75 + 152*x^2 + 70*x^4 + 9*x^6) - (23*I)*Sqrt[2]*(-5 + Sqrt[13])*Sqrt[(-5 + Sqrt[13] - 2*x^2)/(-5 + Sqrt[
13])]*Sqrt[5 + Sqrt[13] + 2*x^2]*EllipticE[I*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6] + I*Sqr
t[2]*(-130 + 23*Sqrt[13])*Sqrt[(-5 + Sqrt[13] - 2*x^2)/(-5 + Sqrt[13])]*Sqrt[5 + Sqrt[13] + 2*x^2]*EllipticF[I
*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6])/(30*Sqrt[3 + 5*x^2 + x^4])

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 226, normalized size = 0.8 \begin{align*}{\frac{3\,{x}^{3}}{5}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+{\frac{5\,x}{3}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+6\,{\frac{\sqrt{1- \left ( -5/6+1/6\,\sqrt{13} \right ){x}^{2}}\sqrt{1- \left ( -5/6-1/6\,\sqrt{13} \right ){x}^{2}}{\it EllipticF} \left ( 1/6\,x\sqrt{-30+6\,\sqrt{13}},5/6\,\sqrt{3}+1/6\,\sqrt{39} \right ) }{\sqrt{-30+6\,\sqrt{13}}\sqrt{{x}^{4}+5\,{x}^{2}+3}}}+{\frac{552}{5\,\sqrt{-30+6\,\sqrt{13}} \left ( \sqrt{13}+5 \right ) }\sqrt{1- \left ( -{\frac{5}{6}}+{\frac{\sqrt{13}}{6}} \right ){x}^{2}}\sqrt{1- \left ( -{\frac{5}{6}}-{\frac{\sqrt{13}}{6}} \right ){x}^{2}} \left ({\it EllipticF} \left ({\frac{x\sqrt{-30+6\,\sqrt{13}}}{6}},{\frac{5\,\sqrt{3}}{6}}+{\frac{\sqrt{39}}{6}} \right ) -{\it EllipticE} \left ({\frac{x\sqrt{-30+6\,\sqrt{13}}}{6}},{\frac{5\,\sqrt{3}}{6}}+{\frac{\sqrt{39}}{6}} \right ) \right ){\frac{1}{\sqrt{{x}^{4}+5\,{x}^{2}+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2+2)*(x^4+5*x^2+3)^(1/2),x)

[Out]

3/5*x^3*(x^4+5*x^2+3)^(1/2)+5/3*x*(x^4+5*x^2+3)^(1/2)+6/(-30+6*13^(1/2))^(1/2)*(1-(-5/6+1/6*13^(1/2))*x^2)^(1/
2)*(1-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/2)*EllipticF(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/
6*39^(1/2))+552/5/(-30+6*13^(1/2))^(1/2)*(1-(-5/6+1/6*13^(1/2))*x^2)^(1/2)*(1-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/(
x^4+5*x^2+3)^(1/2)/(13^(1/2)+5)*(EllipticF(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2))-EllipticE(1/
6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{x^{4} + 5 \, x^{2} + 3}{\left (3 \, x^{2} + 2\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 + 5*x^2 + 3)*(3*x^2 + 2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{x^{4} + 5 \, x^{2} + 3}{\left (3 \, x^{2} + 2\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^4 + 5*x^2 + 3)*(3*x^2 + 2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (3 x^{2} + 2\right ) \sqrt{x^{4} + 5 x^{2} + 3}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2+2)*(x**4+5*x**2+3)**(1/2),x)

[Out]

Integral((3*x**2 + 2)*sqrt(x**4 + 5*x**2 + 3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{x^{4} + 5 \, x^{2} + 3}{\left (3 \, x^{2} + 2\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + 5*x^2 + 3)*(3*x^2 + 2), x)